A Public Key Cryptosystem Based on EllipticCurves over ZZ = nZZ Equivalent to
نویسنده
چکیده
Elliptic curves over the ring Z Z=nZ Z where n is the product of two large primes have rst been proposed for public key cryptosystems in 4]. The security of this system is based on the integer factorization problem, but it is unknown whether breaking the system is equivalent to factoring. In this paper, we present a variant of this cryptosystem for which breaking the system is equivalent to factoring the modulus n. Moreover, we extend the ideas to get a signature scheme based on elliptic curves over Z Z=nZ Z.
منابع مشابه
EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملOn the Security of a Modified Paillier Public-Key Primitive
Choi et al. proposed the modified Paillier cryptosystem (M-Paillier cryptosystem). They use a special public-key g ∈ ZZ/nZZ such that gφ(n) = 1 + n mod n2, where n is the RSA modulus. The distribution of the public key g is different from that of the original one. In this paper, we study the security of the usage of the public key. Firstly, we prove that the one-wayness of the M-Paillier crypto...
متن کاملQTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملImproving the Rao-Nam secret key cryptosystem using regular EDF-QC-LDPC codes
This paper proposes an efficient joint secret key encryption-channel coding cryptosystem, based on regular Extended Difference Family Quasi-Cyclic Low-Density Parity-Check codes. The key length of the proposed cryptosystem decreases up to 85 percent using a new efficient compression algorithm. Cryptanalytic methods show that the improved cryptosystem has a significant security advantage over Ra...
متن کاملA Public Key Cryptosystem Based on Elliptic Curves over Z/nZ Equivalent to Factoring
Elliptic curves over the ring Z / n Z where R is the product of two large primes have first been proposed for public key cryptosystems in [4]. The security of this system is based on the integer factorization problem, but it is unknown whether breaking the system is equivalent to factoring. In this paper, we present a variant of this cryptosystem for which breaking the system is equivalent to f...
متن کامل